Xin He, PhD

My lab uses computational approaches to study the genetics of human diseases, including cancer. A primary focus of our research is to develop novel tools for mapping risk genes of complex diseases from genome wide association studies (GWAS), sequencing studies or somatic mutations in the case of cancer. These tools are often been used in close collaboration with experimental biologists. A key feature of our strategy is the integration of multiple genomic datasets, such as transcriptome data, epigenetic data, and biological networks. This integrated approach could combine signals in different datasets to increase the power of studies, and shed light on the mechanism connecting genetic changes to phenotypes.



We are also interested in computational questions in regulatory genomics. How do cis-regulatory sequences interpret the information in cellular environments to drive spatial-temporal gene expression patterns? How do variations of regulatory sequences shape phenotypic variation and evolution? We believe a better understanding of these questions will also help the study of human genetics, specifically by improving our ability to interpret variations in non-coding sequences.

Carnegie Mellon University
Pittsburgh
Postdoc - Computational Biology
2014

University of California
San Francisco
Postdoc - Statistical genetics
2011

University of Illinois
Urbana-Champaign
PhD - Computer Science
2009

Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants.
Zhang S, Zhang H, Zhou Y, Qiao M, Zhao S, Kozlova A, Shi J, Sanders AR, Wang G, Luo K, Sengupta S, West S, Qian S, Streit M, Avramopoulos D, Cowan CA, Chen M, Pang ZP, Gejman PV, He X, Duan J. Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science. 2020 07 31; 369(6503):561-565.
PMID: 32732423

Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability.
Zhang Z, Luo K, Zou Z, Qiu M, Tian J, Sieh L, Shi H, Zou Y, Wang G, Morrison J, Zhu AC, Qiao M, Li Z, Stephens M, He X, He C. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat Genet. 2020 Sep; 52(9):939-949.
PMID: 32601472

mTADA is a framework for identifying risk genes from de novo mutations in multiple traits.
Nguyen TH, Dobbyn A, Brown RC, Riley BP, Buxbaum JD, Pinto D, Purcell SM, Sullivan PF, He X, Stahl EA. mTADA is a framework for identifying risk genes from de novo mutations in multiple traits. Nat Commun. 2020 06 10; 11(1):2929.
PMID: 32522981

Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics.
Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet. 2020 07; 52(7):740-747.
PMID: 32451458

Detailed modeling of positive selection improves detection of cancer driver genes.
Zhao S, Liu J, Nanga P, Liu Y, Cicek AE, Knoblauch N, He C, Stephens M, He X. Detailed modeling of positive selection improves detection of cancer driver genes. Nat Commun. 2019 07 30; 10(1):3399.
PMID: 31363082

Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites.
Hu L, Liu Y, Han S, Yang L, Cui X, Gao Y, Dai Q, Lu X, Kou X, Zhao Y, Sheng W, Gao S, He X, He C. Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites. J Am Chem Soc. 2019 06 05; 141(22):8694-8697.
PMID: 31117646

A Statistical Framework for Mapping Risk Genes from De Novo Mutations in Whole-Genome-Sequencing Studies.
Liu Y, Liang Y, Cicek AE, Li Z, Li J, Muhle RA, Krenzer M, Mei Y, Wang Y, Knoblauch N, Morrison J, Zhao S, Jiang Y, Geller E, Ionita-Laza I, Wu J, Xia K, Noonan JP, Sun ZS, He X. A Statistical Framework for Mapping Risk Genes from De Novo Mutations in Whole-Genome-Sequencing Studies. Am J Hum Genet. 2018 06 07; 102(6):1031-1047.
PMID: 29754769

Evolution of transcript modification by N6-methyladenosine in primates.
Ma L, Zhao B, Chen K, Thomas A, Tuteja JH, He X, He C, White KP. Evolution of transcript modification by N6-methyladenosine in primates. Genome Res. 2017 03; 27(3):385-392.
PMID: 28052920

Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci.
Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, Murtha MT, Bal VH, Bishop SL, Dong S, Goldberg AP, Jinlu C, Keaney JF, Klei L, Mandell JD, Moreno-De-Luca D, Poultney CS, Robinson EB, Smith L, Solli-Nowlan T, Su MY, Teran NA, Walker MF, Werling DM, Beaudet AL, Cantor RM, Fombonne E, Geschwind DH, Grice DE, Lord C, Lowe JK, Mane SM, Martin DM, Morrow EM, Talkowski ME, Sutcliffe JS, Walsh CA, Yu TW. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron. 2015 Sep 23; 87(6):1215-1233.
PMID: 26402605

De novo ChIP-seq analysis.
He X, Cicek AE, Wang Y, Schulz MH, Le HS, Bar-Joseph Z. De novo ChIP-seq analysis. Genome Biol. 2015 Sep 23; 16:205.
PMID: 26400819

View All Publications